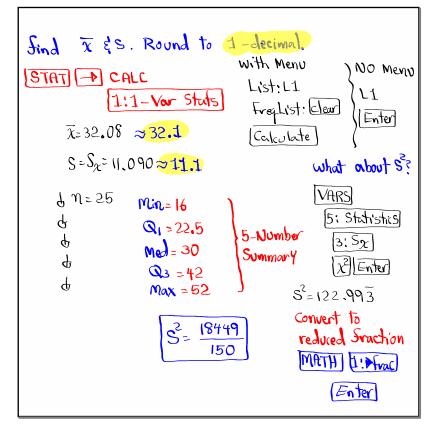


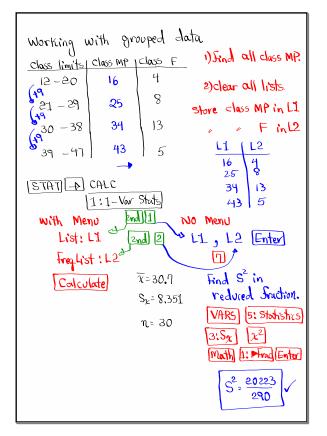
Feb 19-8:47 AM



Feb 27-6:28 PM

I randomly selected 25 students, and here are their					
ages :					1) clear all lists.
24	32	18	19	20	2nd + 4: Clear All 1:5/5 Enter
30	25	19	28	29	2) Store data elements
21	33	40	45	32	in L1. L11
40	35	30	24	16	STAT Edit 24
50	48	52	48	44	1:Edit 32 18
3) Sort LI, then view it, and make Stem 44 STATI Edit 2nd 1					
	2: S o	rta(L1 [Enter	16899
2nd) {16	18	inter 19	۱۹	▶ - ≯ -	≥ 0144589 3 002235 4 004588 5 02

Feb 27-7:15 PM


Feb 27-7:26 PM

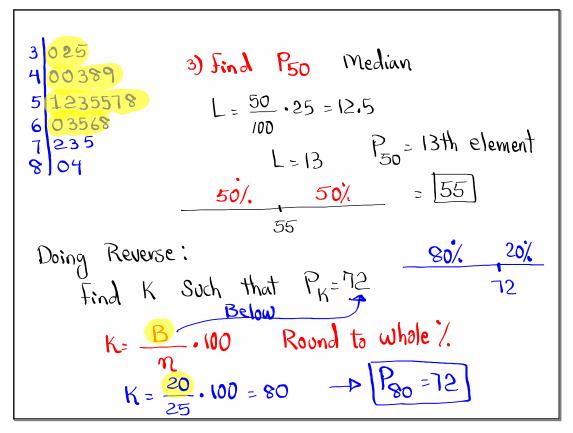
we had the Sollowing STEM Plot.
16899 1)
$$n = 25$$

20194589 2) How many dota elements are
3002235 below 4D? 17
4) Range = 52-16 - 36
5) Midrange = $\frac{52 + 16}{2}$ = 34 IT is what? of 25?
6) Estimate S $\frac{17}{25} \cdot 100 = 68$ 68%
 $S \approx \frac{Range}{4} = \frac{36}{4} = 51$

we had the following 5-Number Summary:
NUL-16
1) Box Plot

$$Q_1 = 22.5$$

 $Med = 30$
 $Q_3 = 42$
 $Max = 52$
3) $IQR = Q_3 - Q_1 = 42 - 22.5 = 19.5$
3) Upper Sence: $Q_3 + 1.5(IQR) = 42 + 1.5(19.5) = 11.25$
Lower Sence: $Q_1 - 1.5(IQR) = 42 + 1.5(19.5) = -11.25$
Lower Sence: $Q_1 - 1.5(IQR) = 22.5 - 1.5(19.5) = -6.75$
4) Discuss outlievs. No outliers
5) what i of students were below $42?$
 $T5/2$
 Q_3

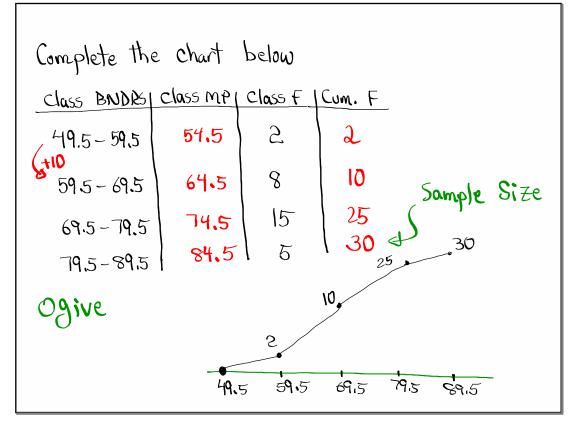

Feb 27-7:40 PM

Feb 27-7:46 PM

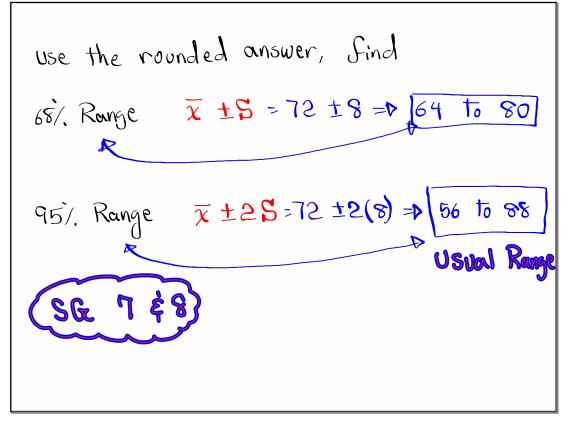
Percentile 1) Data must be Sorted. 2) Notation $P_{K} = \frac{\kappa^{2}}{P_{c}}$ (100- κ)? ex. P_{10} <u>10/. 90/.</u> P_{10} ex. P_{85} <u>85/. 15/.</u> P_{85} How to Sind PK Location $L = \frac{K}{100} \cdot \eta$ Is decimal -> Round-UP PK=Lth element Is whole # $P_{K^{\pm}} = \frac{\text{Lth element + Next one}}{2}$ $3 0 25 \qquad 1) 1 = 25$ 4 00 3895 1 = 355786 0 35687 = 2358 042 2 5 = 5 = 40 + 432 2 5 = 5 = 40 + 432 2 5 = 5 = 40 + 432 41.5 = 41.5

Feb 27-8:14 PM

Consider the Stemp Plot below 5025 623558 702555689 834566 9045 105 4) Ronge = 55 3) Mode = 75 4) Estimate $S = \frac{Ronge}{4} = \frac{55}{4} = \frac{1375}{4}$ $L_{=} \frac{30}{100} \cdot 25 = 7.5 - pL = 8 \rightarrow P_{30} = 8 \text{ th element}$ 30/. 70/. = 686) Sind P_{80} $L = \frac{80}{100} \cdot 25 = 20 \rightarrow R_{80}^{2} = \frac{20 \text{ th element} + \text{Next one}}{2}$ $= \frac{80}{100} \cdot \frac{20}{100} = \frac{86 + 86}{2} = 86$ 7) Find K Such that $P_{K} = 75$ $P_{40} = 75$ $K = \frac{B}{n} \cdot 100 = \frac{10}{25} \cdot 100 = \frac{10}{75}$

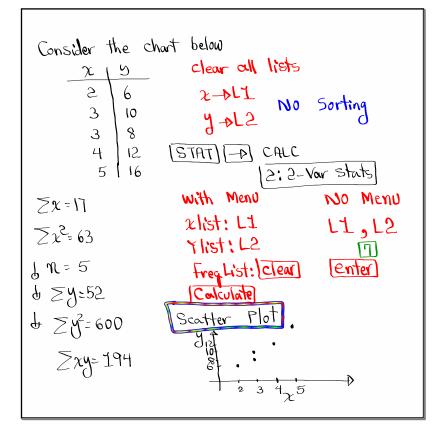

Feb 27-8:26 PM

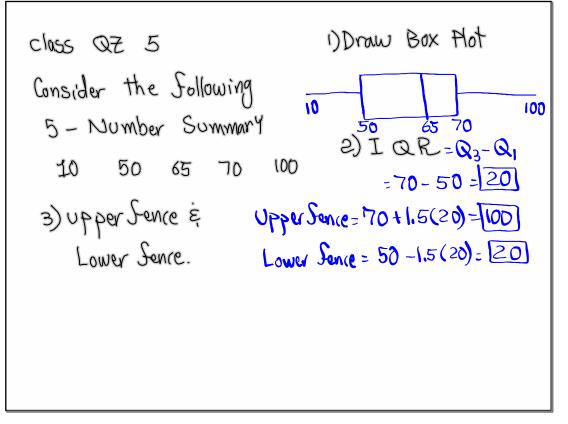
Z - Score It is a numerical value that indicates how many standard deviations is the data clement from the mean. Always round to 3-decimal places. $Z = \frac{x - \overline{x}}{g}$ IS -25 Z52 -> Data element is usual. IS Z<-2 or Z>2-> Unusual Usual Unusual Data element is Unusual -2 2 Z Score is a way to Standandize data elements, then we can compare different data sets.


Majid got 88 on exam 1.
$$\bar{x} = 82, S = 5$$

 $Z = \frac{x - \bar{x}}{S} = \frac{88 - 82}{5} = \frac{6}{5} = [1.2]$ Usual
Majid got 80 on exam 2. $\bar{x} = 70, S = 4$.
 $Z = \frac{x - \bar{x}}{S} = \frac{80 - 70}{4} = \frac{10}{4} = [2.5]$ Unusual
Score

Feb 27-8:40 PM


Lisa makes \$6000/mo. as a nurse and
Mark makes \$5000/mo as a Sales max.
Who is doing better?
Nurses:
$$\overline{X} = 5200$$
 and $S = 500$
Schemen: $\overline{X} = 4500$ and $S = 500$
Lisa $\overline{Z} = \frac{6000 - 5200}{800} = 1$ => Perform the Same
Mark $\overline{Z} = \frac{5000 - 4500}{500} = 1$



Feb 27-8:48 PM

Feb 27-9:00 PM

Feb 27-9:14 PM